
1

Understanding Software Developer Activity via Windows 10 Telemetry

Spencer Buja, Tom Zimmermann, Philippe Kirsanov, Ankit Tandon,

 Xue Liu, Jay Windsor, and Henok Addis

Microsoft

Wharton People Analytics Conference 2019

2

Abstract

Over the past several decades, businesses and the U.S. economy have become increasingly dependent

on non-routine cognitive work. Business managers and researchers agree that it is difficult to measure

and quantify productivity for this type of work, commonly referred to as “knowledge work”. Both

startups and large enterprises must be able to analyze the productivity of their knowledge workers in

order to thrive, as “knowledge work” becomes more prevalent. At Microsoft, most of the “knowledge

work” is produced by software engineers that write code. Using novel data from the Windows 10

Operating System (OS), we have developed and tested hypotheses about how software engineers work

and how to improve their experience. We demonstrate how this people analytics data is ethically

collected, labeled, and analyzed to guide product and organizational decisions at Microsoft. Finally, we

discuss the considerations and ethics of passively collecting productivity data.

Introduction

Non-routine cognitive jobs (i.e. “knowledge work”) require analytical, problem solving, and

communication skills (e.g. managers, computer scientists, artists, architects, etc.) and account for 40%

of U.S employment [1]. Such non-routine occupations (both cognitive and non-cognitive) have

experienced an average of 2% growth every year [1]. Furthermore, routine occupations have showed

significantly slower growth, less than 1% on average, or decline in the case of manual

routine occupations [2]. The shift in demand for skills is commonly referred to as job polarization and is

the result of outsourcing or automation of routine tasks. Since the process of job polarization is likely to

continue, the picture is clear: a business that leads will be one

that develops its workforce’s analytical skills and invests in tools and technologies that meet

the demands of cognitive non-routine work.

One way to understand the productivity of knowledge workers is to track how they spend their time at

work. Though time tracking tools exist for developers, their sparse utilization makes it difficult to draw

meaningful conclusions. For example, in 2017 we found that less than 50 of the thousands of developers

in Windows used an application called RescueTime [3]. In this paper, we introduce the usage of

Windows 10 telemetry to automatically track and understand developer activity.

Windows 10 is uniquely positioned to apply these techniques, due to the breadth of applications that

knowledge workers use in their jobs and the ease of IT deployment of Windows machines at companies.

By writing simple database queries, organizations can obtain estimates of their developers’ time spent

writing code. In the first part of this paper, we show how we compute the Code Authoring metric using

Windows 10 telemetry. In the second part of this paper, we show how we used Windows 10 analytics to

make an intervention to improve developer productivity.

3

Evaluating Time Spent Authoring Code within Microsoft with Windows 10 Analytics

Methods

Overview In our study, we estimate the amount of time a software developer spends coding on their

work computers in a time window (e.g. one day) using Windows 10 OS data. First, we compute a vector

of sessions of activity data with the OS, which has limited context about the currently running

application. Next, we generate labels, accounting for our uncertainty. Finally, we compute the dot

product of the session vector with the label vector and return the Code Authoring metric in hours. We

display the metric in a live information report. Figure I is a screenshot of the report.

Figure I. We report averaged daily Code Authoring times of software engineers by manager. In this case,

we show the Code Authoring times of software engineers that report to Satya Nadella, Microsoft’s CEO,

with weekends removed. The large negative spike in the graph is caused by Labor Day in 2018.

Participants When computing the Code Authoring metric, we use the Windows 10 operating system

activity analytics from the assigned work machines of groups of Microsoft employees in the software

engineering discipline in the state of Washington. At this time, we do not calculate this metric for

individuals within Microsoft, nor do we calculate this metric for users outside of Microsoft.

Procedures This study used a mix of database programming and business intelligence (BI) tools such as

Cosmos, SQL Server, Kusto, and PowerBI. First, we made the choice about what type of Windows 10 OS

telemetry to use. Figure II shows that application activity ranges from simply having a live process within

the OS (most broad) to being immediately acted upon by user input (most specific). We chose to use the

activity level of “interactive” because it best matched our intuition of development activity.

Development activity requires some user input. However, measuring if there is input every second, the

4

definition of “Input” activity (see Figure II), is too high frequency.

Figure II. On the left, we show a Venn diagram of the operating system activity levels available for

analysis. On the right, we provide examples of descriptions of activity levels.

To compute a session with app interactivity, the telemetry system begins tracking if some form of user

input has been applied to a Windows 10 application. It stops tracking if the employee begins providing

user input to a different application or a 60 second timer runs out before there is any new user input to

the application. To compute a vector of application times within a time window in our pipeline, we sum

over application sessions on a single Windows 10 device. Then, we sum over each application in all

Windows 10 devices assigned to Microsoft employees by querying the internal machine census

database.

Next, we generated a set of labels for the applications running on Windows 10. We made a slight
modification of the application labels from Table 6 in Meyer (et al.)’s1 paper on Perceptions of
Productivity [4]. Then, we created a tabular function to map applications to categories. Lastly, we
created a second labeling scheme with richer semantics within the “Development: Other” and “Other”
categories from the first set of labels. We labeled 373 applications using these two labeling schemes.

Table I. We used this first set of discrete labels to provide a general understanding of each application
used by developers.

Label Description
Development: Code writing code

Development: Debug debugging code

Development: Review code reviewing

Development: VC using version control

1 We were unable to differentiate between development and non-development related activity on web browsers.

5

Development: TestApp time spent testing

Development: Other doing other relevant development activity

ReadWriteDocs writing specs, plans, and documents

Email reading and writing emails

Browse browsing the internet

MeetInformal messaging and meeting on communications
applications

Irrelevant interacting with lock screen, remotely accessing
other environments, and using applications to
share hardware resources between computers

Other using entertainment applications

Uncategorized using an unlabeled application

To create more expressive labels, we represented applications as mixtures of the labels in Table I.
Because applications can be a mix of the labels in Table I, we stored probability mass functions for the
discrete random variable of the label of the application. The original 373 labels were stored as
deterministic distributions.

We collected 30 additional labels by following the typical crowdsourcing paradigm of microtasking. Here
we break down the process of measuring how much time is spent coding into context-free units, the
labeling of applications used on Windows 10 [5]. In an internal crowdsourcing tool, we collected
Microsoft employee’s beliefs about the categories of applications they were using. As with most
crowdsourcing setups [5], we combined all labels together by taking the mean. We computed the mean
of the discrete distributions of labels, which resulted in a discrete distribution. Taking a mean of
crowdsourced data often results in less error. A single crowd worker can provide erroneous labels. For
example, one individual labelled the Windows Photos app as a development tool. In the data collection
tool, we experimented with modifying the metric using the intuition that employees on the same team
use tools similarly. Then, we applied k-nearest neighbors to find using organizational tree similarity and
averaged the ratings from k neighbors to model the belief of the label of an application.

Finally, with a vector of the degrees of belief that an application session is coding related and a vector of

the same size of application times, we take an inner product of the two vectors to estimate time spent

coding. We make this measure available for a given manager in an online PowerBI report that is

internally available at Microsoft (see Figure I), providing the manager has a sufficient number of

employees. In our reporting, we do not use the crowdsourced data.

Planning Developer Productivity Intervention using Windows 10 Analytics

Methods

Overview Another way we used Windows 10 telemetry to track developer activity is the product

development of an internal tool called WAVE. WAVE is an IDE extension that enables Windows

developers to use modern development environments driven by the hypothesis that a “golden path”

solution for inner-loop workflows in the IDE will lead to less context switches and more satisfied

developers. Before WAVE, Windows developers were not able to leverage modern IDEs due to the size

6

of the Windows code base, a custom build system, and the lack of tools that make sense of the

Windows build graph without executing a build.

While planning the product development, the WAVE team asked what the most common editing tools

are at Microsoft to decide what development environments to support. Using data from the Windows

telemetry platform, the WAVE team decided to support VS and VS Code. Finally, as the tool has rolled

out, the team monitors Windows 10 analytics.

Participants When computing the Code Authoring metric, we use the Windows 10 OS analytics from the

assigned work machines of Microsoft employees in the software engineering discipline in the state of

Washington. The software developers contributing to the Windows OS is a subset of the potential

population that can be measured.

Procedures Between November 1, 2017 and May 1, 2018, we collected participants’ engagement hours

and filtered it to contain all sessions in the “Code Editing” and “IDE” categories. These categories are

elements of the second version of application categories and do not appear in Table I.

With the engagement data, we calculated two metrics. First, we calculated the distinct number of users

of each of these applications. Second, we calculated the total engagement time, summed over all

participants. We computed these two metrics for both the six-month window and the last three months

of the window. This data is available in Table II, sorted by distinct counts of employees that used the

program at least once in the six-month window. Visual Studio and Visual Studio Code are ranked very

highly in Table II.

Table II. We estimated the top 15 integrated development environments and editors at Microsoft using

counts of distinct employees via Windows 10 telemetry in a six-month window.

Application Name Distinct User
Count
(Employees)

Total Engagement
(Hours)

Notepad 16,776 34,642.22

Visual Studio 13,745 443,572.88

Notepad++ 7,444 31,696.15

Visual Studio
Code

4,993 64,555.36

Nodepad2 1,743 1,649.46

Sublime Text 1,623 11,748.87

Visual Studio
Enterprise 2015
with Updates

879 51.30

Unity.exe 511 3,125.44

Unity Editor 488 2,568.48

Android Studio 458 4,339.17

Microsoft Visual
Studio Enterprise
2015

451 32.83

7

VI Improved

(VIM)

422 3,834.99

Source Insight
Program Editor

384 6,558.88

Atom 216 304.32

Source Insight 4.0 183 1,779.15

Over the next few months, the WAVE team developed a version of WAVE for Visual Studio and a version

of WAVE for Visual Studio Code. Next, we limited the participants to Windows Core OS developers and

created a PowerBI report to view the trend of code editor and development environment usage over

time.

Figure III. This chart shows Windows 10 telemetry for the COSINE (Core OS) organization in Microsoft.

Discussion

Careful and targeted evangelization using the Windows 10 telemetry has led to great successes in

Monthly Active Users for WAVE, jumping from ~300 users in November to 739 in February.

Limitations

The two studies in this white paper have limitations. First, an assumption of the Code Authoring metric
is that software developers are typing in an application or IDE when writing their code. This may not be
true, as files can be edited with the online editors in websites that host code repositories and version
control such as GitHub and Azure DevOps. However, based on the experience of the team, the number
of people using online code editors appears to be insignificant. Additionally, respondents to the Stack
Overflow 2018 developer survey do not mention using a browser or online editor as the primary
development environment of the individual developer [6].

8

Second, another requirement of the Code Authoring metric is that we have labels for the Windows 10
applications used by employees. We have not labelled every application used on the Windows 10
platform and new applications arrive frequently.

Key Takeaways and Future Directions

We are excited about using Windows 10 to analyze the activity of software engineers and, more broadly,

knowledge workers. Internally at Microsoft, Windows 10 analytics has been used to both discover new

opportunities and to create new evaluative metrics to understand interventions’ impact on developer

productivity. In the future, other businesses will be able to use Windows 10 to ethically monitor and

improve the productivity of their knowledge workers.

The most important topic for the future direction of this research is the ethics of the use of algorithms

and analytics to compute productivity data about knowledge workers. Newman, Fast, and Harmon

investigated the ethical theories that help us draw ethical conclusions about the use of analytics for

automated decision-making [7]. Utilitarian ethics proclaims we should maximize societal outcomes

efficiently and distribute outcomes fairly (e.g. based on productivity), which indicates that we should

investigate productivity analytics. However, in Kantian ethics, we should never treat humans as means

to ends. Therefore, we should not reduce humans to numbers. The conclusion of Newman (et al.) is that

we should utilize both human judgment and analytics to make decisions. Similarly, Dietvorst and Massey

(et al.) found that humans are more comfortable with using algorithmic decision-making systems based

on data modeling, if outputs are modifiable by their human users [8]. Thus, we strongly believe that

good human judgment must be used when drawing conclusions with coding time estimates and other

developer productivity metrics.

Second, we need to understand how Windows 10 analytics relates to the two standard ways of

measuring developer productivity. Though there is no generally accepted quantitative measure of

productivity, researchers have measured it by quantifying how much the engineer has affected their

product. Traditionally, researchers have used lines of code [9] and function points [10]. However,

developers have presented valid arguments that they can deliver value by deleting dead source code

and making one-line code changes for critical bug fixes. Other researchers analyze self-reported

productivity by developers [11]. It is crucial to understand how time spent coding relates to both

traditional measures of productivity and self-reported productivity. This will help verify the utility of

organizations striving to improve their Code Authoring time.

Furthermore, the WAVE extension for OS developers is still under active development. By leveraging the

Windows 10 telemetry, we have begun testing our hypotheses about the code authoring experience for

developers in Windows and whether context switches are reduced for WAVE users. This telemetry has

also allowed us to directly engage with developers on non-WAVE toolsets to collect feedback on old

workflows and evangelize the WAVE workflow.

Finally, we must address the impact of browsers. The top two applications used by the participants are
internet browsers. The activity on the internet browser is as diverse as an operating system because
they are both platforms for applications. Understanding and categorizing browsers will dramatically
improve the quality of Windows 10 analytics.

9

References

[1] M. Dvorkin, “Jobs Involving Routine Tasks Aren’t Growing,” 2016. [Online]. Available:
https://www.stlouisfed.org/on-the-economy/2016/january/jobs-involving-routine-tasks-arent-
growing .

[2] M. Dvorkin, “The Growing Skill Divide in the U.S. Labor Market,” 2017.

[3] “RescueTime.” [Online]. Available: https://www.rescuetime.com/. [Accessed: 02-Apr-2019].

[4] T. Zimmermann, A. N. Meyer, G. C. Murphy, and T. Fritz, “Software Developers’ Perceptions of
Productivity,” ACM - Assoc. Comput. Mach., 2014.

[5] Walter S. Lasecki, “Hybrid Intelligence Crowdsourcing for Robust Interactive Intelligent Systems.”

[6] “Developer Survey Results 2018,” 2018. [Online]. Available:
https://insights.stackoverflow.com/survey/2018.

[7] D. Newman, N. Fast, and D. Harmon, “When Eliminating Bias Isn’t Fair: Analytics, Algorithms, and
Procedural Justice.” [Online]. Available: https://vimeo.com/257794509.

[8] B. Dietvorst, J. P. Simmons, and C. Massey, “Overcoming Algorithm Aversion: People Will Use
Imperfect Algorithms If They Can (Even Slightly) Modify Them,” 2015.

[9] Frederick P. Brooks, The Mythical Man-Man. 1972.

[10] A. J. Albrecht, “Measuring Application Development Productivity,” Proc. IBM Appl. Dev. Symp, pp.
83–92, 1979.

[11] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz, “The work life of
developers: Activities, switches and perceived productivity,” IEEE Trans. Softw. Eng., pp. 1178–
1193, 2017.

